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Measurements of the return loss at the input and output ports in-
dicated a slight mismatch at the design frequencies, partially due to
extrapolating the transistor model from 18 to 30 GHz. However, pro-
cessing factors that were unknown when the circuit was designed re-
sulted in a suboptimal Lange coupler, and an inferior match at the RF
and LO ports.

The return loss is shown in Figs. 4 and 5. As can be seen, at the
frequencies of minimum conversion loss, the return loss was approxi-
mately�15,�10, and�15 dB at the LO, RF, and IF ports, respectively.

The third-order intercept was measured at an output power of ap-
proximately�6.2 dBm, corresponding to an input power of 4.5 dBm,
under the conditions that provided maximum conversion gain. Fig. 6
shows the third-order intercept. Note that closely spaced measurements
were made at low power levels due to power limitations of the sources
used.

The LO–RF isolation was measured to be 49 dB, the RF–IF isolation
was 52 dB, and the LO–IF isolation was 33 dB at the frequency of
minimum conversion loss.

This mixer’s performance is similar to the published performance of
other mixers; this is significant because the 0.8-�m MESFET process
used for this mixer is much less expensive than most of the processes
usually used at this frequency. Table I shows a comparison of this work
with other reported mixers. Note that the data for this work are mea-
sured using only a single output.

IV. CONCLUSIONS

This paper has presented a MESFET downconvert mixer that uses
the common-gate configuration. The common-gate configuration al-
lows a simpler process to be used than would be possible with a CS
configuration. Measurements on the mixer indicate a conversion loss
of 10.7 dB, with a third-order intercept at�6.2-dBm output power.

A survey of published mixer results showed that the performance
of this mixer is similar to that of other mixers in this frequency band.
However, most mixers designed in theKa-band use more expensive
higher performance processes. This paper suggests that circuits may be
designed using common-gate transistors to achieve performance com-
parable to circuits designed using more expensive processes.
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Analytical Evaluation of the MoM Matrix Elements
for the Capacitance of a Charged Plate

Jen-Tsai Kuo and Ke-Ying Su

Abstract—Closed-form expression is derived for the fourfold integral
involved in the evaluation of the capacitance of a charged plate using the
Galerkin’s procedure in the method of moments. The dimensions of each
rectangular subsection for discretizing the conducting plate can be arbi-
trary. The calculated solutions converge faster than the point-matching re-
sults, as expected.

Index Terms—Galerkin’s procedure, method of moments.

I. INTRODUCTION

The capacitance of a charged conducting plate can be evaluated
by the method of moments (MoM). Thus far, in the MoM, the
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point-matching technique has been used [1]. The basis functions are
localized two-dimensional pulse functions, and the test functions are
two-dimensional Dirac’s delta functions. It follows that each MoM
matrix element is a two-dimensional integral. In [1], the integral is
approximately evaluated as if the charge distribution over a divided
subsection was a point charge. Recently, a closed-form integration has
been derived in [2] and the final result for the capacitance appears to
be reliably convergent.

In the MoM, the main advantage of the point-matching technique
is that the evaluation of the matrix elements can be greatly simplified
since the Dirac’s delta functions are involved in the integration defined
for the inner product of the problem. The major disadvantage is that,
for low-order solutions, the accuracy and convergence of the solution
generally depend on the location of the matching points [3]. In the
point-matching analysis of a cylindrical dipole in [4], it is reported that
the positions of the matching points have to be carefully selected away
from the regions of zero fields produced by the basis functions. The
Galerkin’s procedure, on the other hand, has been found to give better
results and faster convergence in the majority of cases for higher order
solutions [3]. This motivates us to derive the closed-form integration
for the Galerkin’s solution of the charged plate.

II. MoM M ATRIX ELEMENTS

When the Galerkin’s procedure in the MoM is employed to calculate
the capacitance of a conducting plate in free space, the inner product
involved in the method becomes a fourfold integral. The simple sub-
section method [1] can be used to divide the plate intoM � N rect-
angular subsections. Let the center of each subsection be(xk; yk),
k = 1; 2; . . . ; M �N , and the associated basis function be a two-di-
mensional pulse, which is unity overx 2 [xk � �k=2; xk + �k=2]
andy 2 [yk � �k=2; yk + �k=2]. It can be shown that the closed-form
result for the fourfold integral is (1), shown at the top of this page, where
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In (1), "0 = 8:854� 10�12 F/m is used.

TABLE I
CAPACITANCE (IN PICOFARADS) OF A UNIT SQUARE CONDUCTING PLATE

(1 m� 1 m)

III. N UMERICAL RESULTS

Table I compares the capacitance values for a 1 m� 1 m conducting
plate calculated by (1) with those obtained by the point-matching tech-
nique [2]. The two dimensions of the plate are equally partitioned into
M = N = 2L subsections, and the matrix size isM2

�M2. In our
calculation, the size of the final matrix is reduced to(M=2)2�(M=2)2

by utilizing the structural symmetry.
The last row of Table I shows the Richardson’s extrapolation results

to L = 6. The relative deviation between the two extrapolated values
is less than 2.5� 10�5. It is plausible to assume that these extrapo-
lated values are the converged results. In Table I, the number in the
parentheses is the relative deviation of each calculated value from the
converged result for each set of solutions. Obviously, the Galerkin’s
results have faster convergence than the point-matching solutions for
this particular study.

IV. CONCLUSION

We have presented the closed-form expression for the fourfold inte-
gral involved in the MoM calculation of the capacitance of a conducting
plate. The expression is applicable to nonuniform rectangular subsec-
tions in two dimensions. The calculations show how the Galerkin’s pro-
cedure provides faster convergence than the point-matching solution to
this particular problem.
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